Files
gpx.studio/gpx/dist/simplify.js
2024-09-16 10:57:10 +02:00

127 lines
5.0 KiB
JavaScript

import { TrackPoint } from "./gpx";
const earthRadius = 6371008.8;
export function ramerDouglasPeucker(points, epsilon = 50, measure = crossarcDistance) {
if (points.length == 0) {
return [];
}
else if (points.length == 1) {
return [{
point: points[0]
}];
}
let simplified = [{
point: points[0]
}];
ramerDouglasPeuckerRecursive(points, epsilon, measure, 0, points.length - 1, simplified);
simplified.push({
point: points[points.length - 1]
});
return simplified;
}
function ramerDouglasPeuckerRecursive(points, epsilon, measure, start, end, simplified) {
let largest = {
index: 0,
distance: 0
};
for (let i = start + 1; i < end; i++) {
let distance = measure(points[start], points[end], points[i]);
if (distance > largest.distance) {
largest.index = i;
largest.distance = distance;
}
}
if (largest.distance > epsilon && largest.index != 0) {
ramerDouglasPeuckerRecursive(points, epsilon, measure, start, largest.index, simplified);
simplified.push({ point: points[largest.index], distance: largest.distance });
ramerDouglasPeuckerRecursive(points, epsilon, measure, largest.index, end, simplified);
}
}
export function crossarcDistance(point1, point2, point3) {
return crossarc(point1.getCoordinates(), point2.getCoordinates(), point3 instanceof TrackPoint ? point3.getCoordinates() : point3);
}
function crossarc(coord1, coord2, coord3) {
// Calculates the shortest distance in meters
// between an arc (defined by p1 and p2) and a third point, p3.
// Input lat1,lon1,lat2,lon2,lat3,lon3 in degrees.
const rad = Math.PI / 180;
const lat1 = coord1.lat * rad;
const lat2 = coord2.lat * rad;
const lat3 = coord3.lat * rad;
const lon1 = coord1.lon * rad;
const lon2 = coord2.lon * rad;
const lon3 = coord3.lon * rad;
// Prerequisites for the formulas
const bear12 = bearing(lat1, lon1, lat2, lon2);
const bear13 = bearing(lat1, lon1, lat3, lon3);
let dis13 = distance(lat1, lon1, lat3, lon3);
let diff = Math.abs(bear13 - bear12);
if (diff > Math.PI) {
diff = 2 * Math.PI - diff;
}
// Is relative bearing obtuse?
if (diff > (Math.PI / 2)) {
return dis13;
}
// Find the cross-track distance.
let dxt = Math.asin(Math.sin(dis13 / earthRadius) * Math.sin(bear13 - bear12)) * earthRadius;
// Is p4 beyond the arc?
let dis12 = distance(lat1, lon1, lat2, lon2);
let dis14 = Math.acos(Math.cos(dis13 / earthRadius) / Math.cos(dxt / earthRadius)) * earthRadius;
if (dis14 > dis12) {
return distance(lat2, lon2, lat3, lon3);
}
else {
return Math.abs(dxt);
}
}
function distance(latA, lonA, latB, lonB) {
// Finds the distance between two lat / lon points.
return Math.acos(Math.sin(latA) * Math.sin(latB) + Math.cos(latA) * Math.cos(latB) * Math.cos(lonB - lonA)) * earthRadius;
}
function bearing(latA, lonA, latB, lonB) {
// Finds the bearing from one lat / lon point to another.
return Math.atan2(Math.sin(lonB - lonA) * Math.cos(latB), Math.cos(latA) * Math.sin(latB) - Math.sin(latA) * Math.cos(latB) * Math.cos(lonB - lonA));
}
export function projectedPoint(point1, point2, point3) {
return projected(point1.getCoordinates(), point2.getCoordinates(), point3 instanceof TrackPoint ? point3.getCoordinates() : point3);
}
function projected(coord1, coord2, coord3) {
// Calculates the point on the line defined by p1 and p2
// that is closest to the third point, p3.
// Input lat1,lon1,lat2,lon2,lat3,lon3 in degrees.
const rad = Math.PI / 180;
const lat1 = coord1.lat * rad;
const lat2 = coord2.lat * rad;
const lat3 = coord3.lat * rad;
const lon1 = coord1.lon * rad;
const lon2 = coord2.lon * rad;
const lon3 = coord3.lon * rad;
// Prerequisites for the formulas
const bear12 = bearing(lat1, lon1, lat2, lon2);
const bear13 = bearing(lat1, lon1, lat3, lon3);
let dis13 = distance(lat1, lon1, lat3, lon3);
let diff = Math.abs(bear13 - bear12);
if (diff > Math.PI) {
diff = 2 * Math.PI - diff;
}
// Is relative bearing obtuse?
if (diff > (Math.PI / 2)) {
return coord1;
}
// Find the cross-track distance.
let dxt = Math.asin(Math.sin(dis13 / earthRadius) * Math.sin(bear13 - bear12)) * earthRadius;
// Is p4 beyond the arc?
let dis12 = distance(lat1, lon1, lat2, lon2);
let dis14 = Math.acos(Math.cos(dis13 / earthRadius) / Math.cos(dxt / earthRadius)) * earthRadius;
if (dis14 > dis12) {
return coord2;
}
else {
// Determine the closest point (p4) on the great circle
const f = dis14 / earthRadius;
const lat4 = Math.asin(Math.sin(lat1) * Math.cos(f) + Math.cos(lat1) * Math.sin(f) * Math.cos(bear12));
const lon4 = lon1 + Math.atan2(Math.sin(bear12) * Math.sin(f) * Math.cos(lat1), Math.cos(f) - Math.sin(lat1) * Math.sin(lat4));
return { lat: lat4 / rad, lon: lon4 / rad };
}
}