import { TrackPoint } from "./gpx"; const earthRadius = 6371008.8; export function ramerDouglasPeucker(points, epsilon = 50, measure = crossarcDistance) { if (points.length == 0) { return []; } else if (points.length == 1) { return [{ point: points[0] }]; } let simplified = [{ point: points[0] }]; ramerDouglasPeuckerRecursive(points, epsilon, measure, 0, points.length - 1, simplified); simplified.push({ point: points[points.length - 1] }); return simplified; } function ramerDouglasPeuckerRecursive(points, epsilon, measure, start, end, simplified) { let largest = { index: 0, distance: 0 }; for (let i = start + 1; i < end; i++) { let distance = measure(points[start], points[end], points[i]); if (distance > largest.distance) { largest.index = i; largest.distance = distance; } } if (largest.distance > epsilon && largest.index != 0) { ramerDouglasPeuckerRecursive(points, epsilon, measure, start, largest.index, simplified); simplified.push({ point: points[largest.index], distance: largest.distance }); ramerDouglasPeuckerRecursive(points, epsilon, measure, largest.index, end, simplified); } } export function crossarcDistance(point1, point2, point3) { return crossarc(point1.getCoordinates(), point2.getCoordinates(), point3 instanceof TrackPoint ? point3.getCoordinates() : point3); } function crossarc(coord1, coord2, coord3) { // Calculates the shortest distance in meters // between an arc (defined by p1 and p2) and a third point, p3. // Input lat1,lon1,lat2,lon2,lat3,lon3 in degrees. const rad = Math.PI / 180; const lat1 = coord1.lat * rad; const lat2 = coord2.lat * rad; const lat3 = coord3.lat * rad; const lon1 = coord1.lon * rad; const lon2 = coord2.lon * rad; const lon3 = coord3.lon * rad; // Prerequisites for the formulas const bear12 = bearing(lat1, lon1, lat2, lon2); const bear13 = bearing(lat1, lon1, lat3, lon3); let dis13 = distance(lat1, lon1, lat3, lon3); let diff = Math.abs(bear13 - bear12); if (diff > Math.PI) { diff = 2 * Math.PI - diff; } // Is relative bearing obtuse? if (diff > (Math.PI / 2)) { return dis13; } // Find the cross-track distance. let dxt = Math.asin(Math.sin(dis13 / earthRadius) * Math.sin(bear13 - bear12)) * earthRadius; // Is p4 beyond the arc? let dis12 = distance(lat1, lon1, lat2, lon2); let dis14 = Math.acos(Math.cos(dis13 / earthRadius) / Math.cos(dxt / earthRadius)) * earthRadius; if (dis14 > dis12) { return distance(lat2, lon2, lat3, lon3); } else { return Math.abs(dxt); } } function distance(latA, lonA, latB, lonB) { // Finds the distance between two lat / lon points. return Math.acos(Math.sin(latA) * Math.sin(latB) + Math.cos(latA) * Math.cos(latB) * Math.cos(lonB - lonA)) * earthRadius; } function bearing(latA, lonA, latB, lonB) { // Finds the bearing from one lat / lon point to another. return Math.atan2(Math.sin(lonB - lonA) * Math.cos(latB), Math.cos(latA) * Math.sin(latB) - Math.sin(latA) * Math.cos(latB) * Math.cos(lonB - lonA)); } export function projectedPoint(point1, point2, point3) { return projected(point1.getCoordinates(), point2.getCoordinates(), point3 instanceof TrackPoint ? point3.getCoordinates() : point3); } function projected(coord1, coord2, coord3) { // Calculates the point on the line defined by p1 and p2 // that is closest to the third point, p3. // Input lat1,lon1,lat2,lon2,lat3,lon3 in degrees. const rad = Math.PI / 180; const lat1 = coord1.lat * rad; const lat2 = coord2.lat * rad; const lat3 = coord3.lat * rad; const lon1 = coord1.lon * rad; const lon2 = coord2.lon * rad; const lon3 = coord3.lon * rad; // Prerequisites for the formulas const bear12 = bearing(lat1, lon1, lat2, lon2); const bear13 = bearing(lat1, lon1, lat3, lon3); let dis13 = distance(lat1, lon1, lat3, lon3); let diff = Math.abs(bear13 - bear12); if (diff > Math.PI) { diff = 2 * Math.PI - diff; } // Is relative bearing obtuse? if (diff > (Math.PI / 2)) { return coord1; } // Find the cross-track distance. let dxt = Math.asin(Math.sin(dis13 / earthRadius) * Math.sin(bear13 - bear12)) * earthRadius; // Is p4 beyond the arc? let dis12 = distance(lat1, lon1, lat2, lon2); let dis14 = Math.acos(Math.cos(dis13 / earthRadius) / Math.cos(dxt / earthRadius)) * earthRadius; if (dis14 > dis12) { return coord2; } else { // Determine the closest point (p4) on the great circle const f = dis14 / earthRadius; const lat4 = Math.asin(Math.sin(lat1) * Math.cos(f) + Math.cos(lat1) * Math.sin(f) * Math.cos(bear12)); const lon4 = lon1 + Math.atan2(Math.sin(bear12) * Math.sin(f) * Math.cos(lat1), Math.cos(f) - Math.sin(lat1) * Math.sin(lat4)); return { lat: lat4 / rad, lon: lon4 / rad }; } }