import type { Coordinates, GPXFile } from "gpx"; import { TrackPoint } from "gpx"; import mapboxgl from "mapbox-gl"; export function getMarker(coordinates: Coordinates, draggable: boolean = false): mapboxgl.Marker { let element = document.createElement('div'); element.className = `h-3 w-3 rounded-full bg-background border-2 border-black cursor-pointer`; return new mapboxgl.Marker({ draggable, element }).setLngLat(coordinates); } export type SimplifiedTrackPoint = { point: TrackPoint, index: number, distance?: number, segment?: number, zoom?: number }; export class AnchorPointHierarchy { points: SimplifiedTrackPoint[]; constructor() { this.points = []; } getMarkers(): mapboxgl.Marker[] { let markers = []; for (let point of this.points) { let marker = getMarker(point.point.getCoordinates(), true); Object.defineProperty(marker, '_simplified', { value: point }); markers.push(marker); } return markers; } static create(file: GPXFile, epsilon: number = 50): AnchorPointHierarchy { let hierarchy = new AnchorPointHierarchy(); let s = 0; for (let track of file.getChildren()) { for (let segment of track.getChildren()) { let points = segment.trkpt; let simplified = ramerDouglasPeucker(points, epsilon); // Assign segment number to each point simplified.forEach((point) => { point.segment = s; point.zoom = getZoomLevelForDistance(point.point.getLatitude(), point.distance); hierarchy.points.push(point); }); s++; } } return hierarchy; } } function getZoomLevelForDistance(latitude: number, distance?: number): number { if (distance === undefined) { return 0; } const rad = Math.PI / 180; const lat = latitude * rad; return Math.min(20, Math.max(0, Math.floor(Math.log2((earthRadius * Math.cos(lat)) / distance)))); } function ramerDouglasPeucker(points: TrackPoint[], epsilon: number, start: number = 0, end: number = points.length - 1): SimplifiedTrackPoint[] { let simplified = [{ point: points[start], index: start, }]; ramerDouglasPeuckerRecursive(points, epsilon, start, end, simplified); simplified.push({ point: points[end], index: end }); return simplified; } function ramerDouglasPeuckerRecursive(points: TrackPoint[], epsilon: number, start: number, end: number, simplified: SimplifiedTrackPoint[]) { let largest = { index: 0, distance: 0 }; for (let i = start + 1; i < end; i++) { let distance = crossarc(points[start].getCoordinates(), points[end].getCoordinates(), points[i].getCoordinates()); if (distance > largest.distance) { largest.index = i; largest.distance = distance; } } if (largest.distance > epsilon) { ramerDouglasPeuckerRecursive(points, epsilon, start, largest.index, simplified); simplified.push({ point: points[largest.index], index: largest.index, distance: largest.distance }); ramerDouglasPeuckerRecursive(points, epsilon, largest.index, end, simplified); } } const earthRadius = 6371008.8; function crossarc(coord1: Coordinates, coord2: Coordinates, coord3: Coordinates): number { // Calculates the shortest distance in meters // between an arc (defined by p1 and p2) and a third point, p3. // Input lat1,lon1,lat2,lon2,lat3,lon3 in degrees. const rad = Math.PI / 180; const lat1 = coord1.lat * rad; const lat2 = coord2.lat * rad; const lat3 = coord3.lat * rad; const lon1 = coord1.lon * rad; const lon2 = coord2.lon * rad; const lon3 = coord3.lon * rad; // Prerequisites for the formulas const bear12 = bearing(lat1, lon1, lat2, lon2); const bear13 = bearing(lat1, lon1, lat3, lon3); let dis13 = distance(lat1, lon1, lat3, lon3); let diff = Math.abs(bear13 - bear12); if (diff > Math.PI) { diff = 2 * Math.PI - diff; } // Is relative bearing obtuse? if (diff > (Math.PI / 2)) { return dis13; } // Find the cross-track distance. let dxt = Math.asin(Math.sin(dis13 / earthRadius) * Math.sin(bear13 - bear12)) * earthRadius; // Is p4 beyond the arc? let dis12 = distance(lat1, lon1, lat2, lon2); let dis14 = Math.acos(Math.cos(dis13 / earthRadius) / Math.cos(dxt / earthRadius)) * earthRadius; if (dis14 > dis12) { return distance(lat2, lon2, lat3, lon3); } else { return Math.abs(dxt); } } function distance(latA: number, lonA: number, latB: number, lonB: number): number { // Finds the distance between two lat / lon points. return Math.acos(Math.sin(latA) * Math.sin(latB) + Math.cos(latA) * Math.cos(latB) * Math.cos(lonB - lonA)) * earthRadius; } function bearing(latA: number, lonA: number, latB: number, lonB: number): number { // Finds the bearing from one lat / lon point to another. return Math.atan2(Math.sin(lonB - lonA) * Math.cos(latB), Math.cos(latA) * Math.sin(latB) - Math.sin(latA) * Math.cos(latB) * Math.cos(lonB - lonA)); } export function route(points: Coordinates[], brouterProfile: string, privateRoads: boolean, routing: boolean): Promise { if (routing) { return getRoute(points, brouterProfile, privateRoads); } else { return new Promise((resolve) => { resolve(points.map(point => new TrackPoint({ attributes: { lat: point.lat, lon: point.lon } }))); }); } } async function getRoute(points: Coordinates[], brouterProfile: string, privateRoads: boolean): Promise { let url = `https://routing.gpx.studio?lonlats=${points.map(point => `${point.lon},${point.lat}`).join('|')}&profile=${brouterProfile + (privateRoads ? '-private' : '')}&format=geojson&alternativeidx=0`; let response = await fetch(url); let geojson = await response.json(); let route: TrackPoint[] = []; let coordinates = geojson.features[0].geometry.coordinates; for (let i = 0; i < coordinates.length; i++) { let coord = coordinates[i]; route.push(new TrackPoint({ attributes: { lat: coord[1], lon: coord[0] }, ele: coord[2] ?? undefined })); } return route; }