import type { Coordinates, GPXFile, TrackPoint, TrackSegment } from "gpx"; type SimplifiedTrackPoint = { point: TrackPoint, distance?: number }; const earthRadius = 6371008.8; export function getZoomLevelForDistance(latitude: number, distance?: number): number { if (distance === undefined) { return 0; } const rad = Math.PI / 180; const lat = latitude * rad; return Math.min(20, Math.max(0, Math.floor(Math.log2((earthRadius * Math.cos(lat)) / distance)))); } export function updateAnchorPoints(file: GPXFile) { let segments = file.getSegments(); for (let segment of segments) { if (!segment._data.anchors) { // New segment, compute anchor points for it computeAnchorPoints(segment); continue; } if (segment.trkpt.length > 0) { if (!segment.trkpt[0]._data.anchor) { // First point is not an anchor, make it one segment.trkpt[0]._data.anchor = true; segment.trkpt[0]._data.zoom = 0; } if (!segment.trkpt[segment.trkpt.length - 1]._data.anchor) { // Last point is not an anchor, make it one segment.trkpt[segment.trkpt.length - 1]._data.anchor = true; segment.trkpt[segment.trkpt.length - 1]._data.zoom = 0; } } } } function computeAnchorPoints(segment: TrackSegment) { let points = segment.trkpt; let anchors = ramerDouglasPeucker(points); anchors.forEach((anchor) => { let point = anchor.point; point._data.anchor = true; point._data.zoom = getZoomLevelForDistance(point.getLatitude(), anchor.distance); }); segment._data.anchors = true; } export function ramerDouglasPeucker(points: readonly TrackPoint[], epsilon: number = 50, start: number = 0, end: number = points.length - 1): SimplifiedTrackPoint[] { if (points.length == 0) { return []; } else if (points.length == 1) { return [{ point: points[0] }]; } let simplified = [{ point: points[start] }]; ramerDouglasPeuckerRecursive(points, epsilon, start, end, simplified); simplified.push({ point: points[end] }); return simplified; } function ramerDouglasPeuckerRecursive(points: readonly TrackPoint[], epsilon: number, start: number, end: number, simplified: SimplifiedTrackPoint[]) { let largest = { index: 0, distance: 0 }; for (let i = start + 1; i < end; i++) { let distance = crossarc(points[start].getCoordinates(), points[end].getCoordinates(), points[i].getCoordinates()); if (distance > largest.distance) { largest.index = i; largest.distance = distance; } } if (largest.distance > epsilon) { ramerDouglasPeuckerRecursive(points, epsilon, start, largest.index, simplified); simplified.push({ point: points[largest.index], distance: largest.distance }); ramerDouglasPeuckerRecursive(points, epsilon, largest.index, end, simplified); } } function crossarc(coord1: Coordinates, coord2: Coordinates, coord3: Coordinates): number { // Calculates the shortest distance in meters // between an arc (defined by p1 and p2) and a third point, p3. // Input lat1,lon1,lat2,lon2,lat3,lon3 in degrees. const rad = Math.PI / 180; const lat1 = coord1.lat * rad; const lat2 = coord2.lat * rad; const lat3 = coord3.lat * rad; const lon1 = coord1.lon * rad; const lon2 = coord2.lon * rad; const lon3 = coord3.lon * rad; // Prerequisites for the formulas const bear12 = bearing(lat1, lon1, lat2, lon2); const bear13 = bearing(lat1, lon1, lat3, lon3); let dis13 = distance(lat1, lon1, lat3, lon3); let diff = Math.abs(bear13 - bear12); if (diff > Math.PI) { diff = 2 * Math.PI - diff; } // Is relative bearing obtuse? if (diff > (Math.PI / 2)) { return dis13; } // Find the cross-track distance. let dxt = Math.asin(Math.sin(dis13 / earthRadius) * Math.sin(bear13 - bear12)) * earthRadius; // Is p4 beyond the arc? let dis12 = distance(lat1, lon1, lat2, lon2); let dis14 = Math.acos(Math.cos(dis13 / earthRadius) / Math.cos(dxt / earthRadius)) * earthRadius; if (dis14 > dis12) { return distance(lat2, lon2, lat3, lon3); } else { return Math.abs(dxt); } } function distance(latA: number, lonA: number, latB: number, lonB: number): number { // Finds the distance between two lat / lon points. return Math.acos(Math.sin(latA) * Math.sin(latB) + Math.cos(latA) * Math.cos(latB) * Math.cos(lonB - lonA)) * earthRadius; } function bearing(latA: number, lonA: number, latB: number, lonB: number): number { // Finds the bearing from one lat / lon point to another. return Math.atan2(Math.sin(lonB - lonA) * Math.cos(latB), Math.cos(latA) * Math.sin(latB) - Math.sin(latA) * Math.cos(latB) * Math.cos(lonB - lonA)); }