mirror of
https://github.com/gpxstudio/gpx.studio.git
synced 2025-12-02 18:12:11 +00:00
speed up simplify by using more naive distance
This commit is contained in:
@@ -3,8 +3,6 @@ import { Coordinates } from './types';
|
||||
|
||||
export type SimplifiedTrackPoint = { point: TrackPoint; distance?: number };
|
||||
|
||||
const earthRadius = 6371008.8;
|
||||
|
||||
export function ramerDouglasPeucker(
|
||||
points: TrackPoint[],
|
||||
epsilon: number = 50,
|
||||
@@ -72,65 +70,45 @@ export function crossarcDistance(
|
||||
);
|
||||
}
|
||||
|
||||
const metersPerLatitudeDegree = 111320;
|
||||
|
||||
function getMetersPerLongitudeDegree(latitude: number): number {
|
||||
return Math.cos((latitude * Math.PI) / 180) * metersPerLatitudeDegree;
|
||||
}
|
||||
|
||||
function crossarc(coord1: Coordinates, coord2: Coordinates, coord3: Coordinates): number {
|
||||
// Calculates the shortest distance in meters
|
||||
// between an arc (defined by p1 and p2) and a third point, p3.
|
||||
// Input lat1,lon1,lat2,lon2,lat3,lon3 in degrees.
|
||||
// Calculates the perpendicular distance in meters
|
||||
// between a line segment (defined by p1 and p2) and a third point, p3.
|
||||
// Uses simple planar geometry (ignores earth curvature).
|
||||
|
||||
const rad = Math.PI / 180;
|
||||
const lat1 = coord1.lat * rad;
|
||||
const lat2 = coord2.lat * rad;
|
||||
const lat3 = coord3.lat * rad;
|
||||
// Convert to meters using approximate scaling
|
||||
const metersPerLongitudeDegree = getMetersPerLongitudeDegree(coord1.lat);
|
||||
|
||||
const lon1 = coord1.lon * rad;
|
||||
const lon2 = coord2.lon * rad;
|
||||
const lon3 = coord3.lon * rad;
|
||||
const x1 = coord1.lon * metersPerLongitudeDegree;
|
||||
const y1 = coord1.lat * metersPerLatitudeDegree;
|
||||
const x2 = coord2.lon * metersPerLongitudeDegree;
|
||||
const y2 = coord2.lat * metersPerLatitudeDegree;
|
||||
const x3 = coord3.lon * metersPerLongitudeDegree;
|
||||
const y3 = coord3.lat * metersPerLatitudeDegree;
|
||||
|
||||
// Prerequisites for the formulas
|
||||
const bear12 = bearing(lat1, lon1, lat2, lon2);
|
||||
const bear13 = bearing(lat1, lon1, lat3, lon3);
|
||||
let dis13 = distance(lat1, lon1, lat3, lon3);
|
||||
const dx = x2 - x1;
|
||||
const dy = y2 - y1;
|
||||
const segmentLengthSquared = dx * dx + dy * dy;
|
||||
|
||||
let diff = Math.abs(bear13 - bear12);
|
||||
if (diff > Math.PI) {
|
||||
diff = 2 * Math.PI - diff;
|
||||
if (segmentLengthSquared === 0) {
|
||||
// p1 and p2 are the same point
|
||||
return Math.sqrt((x3 - x1) * (x3 - x1) + (y3 - y1) * (y3 - y1));
|
||||
}
|
||||
|
||||
// Is relative bearing obtuse?
|
||||
if (diff > Math.PI / 2) {
|
||||
return dis13;
|
||||
}
|
||||
// Project p3 onto the line defined by p1-p2
|
||||
const t = Math.max(0, Math.min(1, ((x3 - x1) * dx + (y3 - y1) * dy) / segmentLengthSquared));
|
||||
|
||||
// Find the cross-track distance.
|
||||
let dxt = Math.asin(Math.sin(dis13 / earthRadius) * Math.sin(bear13 - bear12)) * earthRadius;
|
||||
// Find the closest point on the segment
|
||||
const projX = x1 + t * dx;
|
||||
const projY = y1 + t * dy;
|
||||
|
||||
// Is p4 beyond the arc?
|
||||
let dis12 = distance(lat1, lon1, lat2, lon2);
|
||||
let dis14 =
|
||||
Math.acos(Math.cos(dis13 / earthRadius) / Math.cos(dxt / earthRadius)) * earthRadius;
|
||||
if (dis14 > dis12) {
|
||||
return distance(lat2, lon2, lat3, lon3);
|
||||
} else {
|
||||
return Math.abs(dxt);
|
||||
}
|
||||
}
|
||||
|
||||
function distance(latA: number, lonA: number, latB: number, lonB: number): number {
|
||||
// Finds the distance between two lat / lon points.
|
||||
return (
|
||||
Math.acos(
|
||||
Math.sin(latA) * Math.sin(latB) +
|
||||
Math.cos(latA) * Math.cos(latB) * Math.cos(lonB - lonA)
|
||||
) * earthRadius
|
||||
);
|
||||
}
|
||||
|
||||
function bearing(latA: number, lonA: number, latB: number, lonB: number): number {
|
||||
// Finds the bearing from one lat / lon point to another.
|
||||
return Math.atan2(
|
||||
Math.sin(lonB - lonA) * Math.cos(latB),
|
||||
Math.cos(latA) * Math.sin(latB) - Math.sin(latA) * Math.cos(latB) * Math.cos(lonB - lonA)
|
||||
);
|
||||
// Return distance from p3 to the projected point
|
||||
return Math.sqrt((x3 - projX) * (x3 - projX) + (y3 - projY) * (y3 - projY));
|
||||
}
|
||||
|
||||
export function projectedPoint(
|
||||
@@ -146,56 +124,39 @@ export function projectedPoint(
|
||||
}
|
||||
|
||||
function projected(coord1: Coordinates, coord2: Coordinates, coord3: Coordinates): Coordinates {
|
||||
// Calculates the point on the line defined by p1 and p2
|
||||
// Calculates the point on the line segment defined by p1 and p2
|
||||
// that is closest to the third point, p3.
|
||||
// Input lat1,lon1,lat2,lon2,lat3,lon3 in degrees.
|
||||
// Uses simple planar geometry (ignores earth curvature).
|
||||
|
||||
const rad = Math.PI / 180;
|
||||
const lat1 = coord1.lat * rad;
|
||||
const lat2 = coord2.lat * rad;
|
||||
const lat3 = coord3.lat * rad;
|
||||
// Convert to meters using approximate scaling
|
||||
const metersPerLongitudeDegree = getMetersPerLongitudeDegree(coord1.lat);
|
||||
|
||||
const lon1 = coord1.lon * rad;
|
||||
const lon2 = coord2.lon * rad;
|
||||
const lon3 = coord3.lon * rad;
|
||||
const x1 = coord1.lon * metersPerLongitudeDegree;
|
||||
const y1 = coord1.lat * metersPerLatitudeDegree;
|
||||
const x2 = coord2.lon * metersPerLongitudeDegree;
|
||||
const y2 = coord2.lat * metersPerLatitudeDegree;
|
||||
const x3 = coord3.lon * metersPerLongitudeDegree;
|
||||
const y3 = coord3.lat * metersPerLatitudeDegree;
|
||||
|
||||
// Prerequisites for the formulas
|
||||
const bear12 = bearing(lat1, lon1, lat2, lon2);
|
||||
const bear13 = bearing(lat1, lon1, lat3, lon3);
|
||||
let dis13 = distance(lat1, lon1, lat3, lon3);
|
||||
const dx = x2 - x1;
|
||||
const dy = y2 - y1;
|
||||
const segmentLengthSquared = dx * dx + dy * dy;
|
||||
|
||||
let diff = Math.abs(bear13 - bear12);
|
||||
if (diff > Math.PI) {
|
||||
diff = 2 * Math.PI - diff;
|
||||
}
|
||||
|
||||
// Is relative bearing obtuse?
|
||||
if (diff > Math.PI / 2) {
|
||||
if (segmentLengthSquared === 0) {
|
||||
// p1 and p2 are the same point
|
||||
return coord1;
|
||||
}
|
||||
|
||||
// Find the cross-track distance.
|
||||
let dxt = Math.asin(Math.sin(dis13 / earthRadius) * Math.sin(bear13 - bear12)) * earthRadius;
|
||||
// Project p3 onto the line defined by p1-p2
|
||||
const t = Math.max(0, Math.min(1, ((x3 - x1) * dx + (y3 - y1) * dy) / segmentLengthSquared));
|
||||
|
||||
// Is p4 beyond the arc?
|
||||
let dis12 = distance(lat1, lon1, lat2, lon2);
|
||||
let dis14 =
|
||||
Math.acos(Math.cos(dis13 / earthRadius) / Math.cos(dxt / earthRadius)) * earthRadius;
|
||||
if (dis14 > dis12) {
|
||||
return coord2;
|
||||
} else {
|
||||
// Determine the closest point (p4) on the great circle
|
||||
const f = dis14 / earthRadius;
|
||||
const lat4 = Math.asin(
|
||||
Math.sin(lat1) * Math.cos(f) + Math.cos(lat1) * Math.sin(f) * Math.cos(bear12)
|
||||
);
|
||||
const lon4 =
|
||||
lon1 +
|
||||
Math.atan2(
|
||||
Math.sin(bear12) * Math.sin(f) * Math.cos(lat1),
|
||||
Math.cos(f) - Math.sin(lat1) * Math.sin(lat4)
|
||||
);
|
||||
// Find the closest point on the segment
|
||||
const projX = x1 + t * dx;
|
||||
const projY = y1 + t * dy;
|
||||
|
||||
return { lat: lat4 / rad, lon: lon4 / rad };
|
||||
}
|
||||
// Convert back to degrees
|
||||
return {
|
||||
lat: projY / metersPerLatitudeDegree,
|
||||
lon: projX / metersPerLongitudeDegree,
|
||||
};
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user