mirror of
https://github.com/gpxstudio/gpx.studio.git
synced 2025-09-05 01:42:54 +00:00
commit dist folder
This commit is contained in:
126
gpx/dist/simplify.js
vendored
Normal file
126
gpx/dist/simplify.js
vendored
Normal file
@@ -0,0 +1,126 @@
|
||||
import { TrackPoint } from "./gpx";
|
||||
const earthRadius = 6371008.8;
|
||||
export function ramerDouglasPeucker(points, epsilon = 50, measure = crossarcDistance) {
|
||||
if (points.length == 0) {
|
||||
return [];
|
||||
}
|
||||
else if (points.length == 1) {
|
||||
return [{
|
||||
point: points[0]
|
||||
}];
|
||||
}
|
||||
let simplified = [{
|
||||
point: points[0]
|
||||
}];
|
||||
ramerDouglasPeuckerRecursive(points, epsilon, measure, 0, points.length - 1, simplified);
|
||||
simplified.push({
|
||||
point: points[points.length - 1]
|
||||
});
|
||||
return simplified;
|
||||
}
|
||||
function ramerDouglasPeuckerRecursive(points, epsilon, measure, start, end, simplified) {
|
||||
let largest = {
|
||||
index: 0,
|
||||
distance: 0
|
||||
};
|
||||
for (let i = start + 1; i < end; i++) {
|
||||
let distance = measure(points[start], points[end], points[i]);
|
||||
if (distance > largest.distance) {
|
||||
largest.index = i;
|
||||
largest.distance = distance;
|
||||
}
|
||||
}
|
||||
if (largest.distance > epsilon && largest.index != 0) {
|
||||
ramerDouglasPeuckerRecursive(points, epsilon, measure, start, largest.index, simplified);
|
||||
simplified.push({ point: points[largest.index], distance: largest.distance });
|
||||
ramerDouglasPeuckerRecursive(points, epsilon, measure, largest.index, end, simplified);
|
||||
}
|
||||
}
|
||||
export function crossarcDistance(point1, point2, point3) {
|
||||
return crossarc(point1.getCoordinates(), point2.getCoordinates(), point3 instanceof TrackPoint ? point3.getCoordinates() : point3);
|
||||
}
|
||||
function crossarc(coord1, coord2, coord3) {
|
||||
// Calculates the shortest distance in meters
|
||||
// between an arc (defined by p1 and p2) and a third point, p3.
|
||||
// Input lat1,lon1,lat2,lon2,lat3,lon3 in degrees.
|
||||
const rad = Math.PI / 180;
|
||||
const lat1 = coord1.lat * rad;
|
||||
const lat2 = coord2.lat * rad;
|
||||
const lat3 = coord3.lat * rad;
|
||||
const lon1 = coord1.lon * rad;
|
||||
const lon2 = coord2.lon * rad;
|
||||
const lon3 = coord3.lon * rad;
|
||||
// Prerequisites for the formulas
|
||||
const bear12 = bearing(lat1, lon1, lat2, lon2);
|
||||
const bear13 = bearing(lat1, lon1, lat3, lon3);
|
||||
let dis13 = distance(lat1, lon1, lat3, lon3);
|
||||
let diff = Math.abs(bear13 - bear12);
|
||||
if (diff > Math.PI) {
|
||||
diff = 2 * Math.PI - diff;
|
||||
}
|
||||
// Is relative bearing obtuse?
|
||||
if (diff > (Math.PI / 2)) {
|
||||
return dis13;
|
||||
}
|
||||
// Find the cross-track distance.
|
||||
let dxt = Math.asin(Math.sin(dis13 / earthRadius) * Math.sin(bear13 - bear12)) * earthRadius;
|
||||
// Is p4 beyond the arc?
|
||||
let dis12 = distance(lat1, lon1, lat2, lon2);
|
||||
let dis14 = Math.acos(Math.cos(dis13 / earthRadius) / Math.cos(dxt / earthRadius)) * earthRadius;
|
||||
if (dis14 > dis12) {
|
||||
return distance(lat2, lon2, lat3, lon3);
|
||||
}
|
||||
else {
|
||||
return Math.abs(dxt);
|
||||
}
|
||||
}
|
||||
function distance(latA, lonA, latB, lonB) {
|
||||
// Finds the distance between two lat / lon points.
|
||||
return Math.acos(Math.sin(latA) * Math.sin(latB) + Math.cos(latA) * Math.cos(latB) * Math.cos(lonB - lonA)) * earthRadius;
|
||||
}
|
||||
function bearing(latA, lonA, latB, lonB) {
|
||||
// Finds the bearing from one lat / lon point to another.
|
||||
return Math.atan2(Math.sin(lonB - lonA) * Math.cos(latB), Math.cos(latA) * Math.sin(latB) - Math.sin(latA) * Math.cos(latB) * Math.cos(lonB - lonA));
|
||||
}
|
||||
export function projectedPoint(point1, point2, point3) {
|
||||
return projected(point1.getCoordinates(), point2.getCoordinates(), point3 instanceof TrackPoint ? point3.getCoordinates() : point3);
|
||||
}
|
||||
function projected(coord1, coord2, coord3) {
|
||||
// Calculates the point on the line defined by p1 and p2
|
||||
// that is closest to the third point, p3.
|
||||
// Input lat1,lon1,lat2,lon2,lat3,lon3 in degrees.
|
||||
const rad = Math.PI / 180;
|
||||
const lat1 = coord1.lat * rad;
|
||||
const lat2 = coord2.lat * rad;
|
||||
const lat3 = coord3.lat * rad;
|
||||
const lon1 = coord1.lon * rad;
|
||||
const lon2 = coord2.lon * rad;
|
||||
const lon3 = coord3.lon * rad;
|
||||
// Prerequisites for the formulas
|
||||
const bear12 = bearing(lat1, lon1, lat2, lon2);
|
||||
const bear13 = bearing(lat1, lon1, lat3, lon3);
|
||||
let dis13 = distance(lat1, lon1, lat3, lon3);
|
||||
let diff = Math.abs(bear13 - bear12);
|
||||
if (diff > Math.PI) {
|
||||
diff = 2 * Math.PI - diff;
|
||||
}
|
||||
// Is relative bearing obtuse?
|
||||
if (diff > (Math.PI / 2)) {
|
||||
return coord1;
|
||||
}
|
||||
// Find the cross-track distance.
|
||||
let dxt = Math.asin(Math.sin(dis13 / earthRadius) * Math.sin(bear13 - bear12)) * earthRadius;
|
||||
// Is p4 beyond the arc?
|
||||
let dis12 = distance(lat1, lon1, lat2, lon2);
|
||||
let dis14 = Math.acos(Math.cos(dis13 / earthRadius) / Math.cos(dxt / earthRadius)) * earthRadius;
|
||||
if (dis14 > dis12) {
|
||||
return coord2;
|
||||
}
|
||||
else {
|
||||
// Determine the closest point (p4) on the great circle
|
||||
const f = dis14 / earthRadius;
|
||||
const lat4 = Math.asin(Math.sin(lat1) * Math.cos(f) + Math.cos(lat1) * Math.sin(f) * Math.cos(bear12));
|
||||
const lon4 = lon1 + Math.atan2(Math.sin(bear12) * Math.sin(f) * Math.cos(lat1), Math.cos(f) - Math.sin(lat1) * Math.sin(lat4));
|
||||
return { lat: lat4 / rad, lon: lon4 / rad };
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user